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The reliabil i ty of many i tems in space vehicles ( f rom piece p a r t s  

to  l a rge  s t ruc tura l  e lements)  can be appropriately considered to  be the 
r e su l t  of probability interaction between the distributions of s t rength 
(failure) and s t r e s s  (load). 
simulation to the construction of empirical  sampling distributions of 
reliabil i ty for  various sample s izes  taken f rom the strength and s t r e s s  
distributions, which a r e  assumed Gaussian. Emphasis  has  been placed 
on v e r y  small sample s izes  and very high values of reliability since 
these a r e  situations commonly imposed on space vehicle development 
p rograms  because of the costs  involved. 

This investigation applies Monte Carlo 

The empir ical  sampling distribution of reliability e st imate s appear  
to  be ve ry  sensitive to the rat io  of the standard deviations of the s t r e s s  
and strength distributions; therefore,  specific sampling distributions are  
constructed for  selected values of this  ratio.  

It is  concluded f rom this  investigation that the constructed empir ica l  
sampling distributions,  can  be utilized to  a id  the designer in establishing 
a de sign reliability goal, place a confidence coefficient on reliabil i ty 
es t imates ,  and to  determine if sample data,  taken f r o m  the s t r e s s  and 
strength distributions,  demonstrates a specified reliabil i ty at  a specified 

confidence level. w 
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DEFINITION OF SYMBOLS 

Symbols 

Pr 
R 

Definition 

A variate f rom the strength distribution. 
A variate f rom the s t r e s s  distribution. 
Population mean of strength distribution. 
Population mean of stress distribution. 
Sample mean of strength distribution. 
Sample mean  of s t r e s s  distribution. 
Population standard deviation of strength distribution. 
Population standard deviation of s t  res s distribution. 
Sample s tandard deviation of strength distribution. 
Sample standard deviation of s t r e s s  distribution. 
Sample of s ize  N f rom the strength distribution. 
Sample of s ize  N f rom the s t r e s s  distribution. 
A normal  deviate 
A normal  deviate representing a specified confidence. 

Kc is obtained from the sampling distribution x, -x 
f l X I Z  + x2 

Probabili ty 
Reliability 

V 
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SUMMARY 

This report  descr ibes  the application of Monte Car lo  simulation to 
constructing the empir ical  sampling distribution of reliabil i ty es t imates  
obtained by sampling f rom the c lass ica l  s t r e s s  and strength (load and 
fa i lure)  distributions , which a r e  assumed Gaussian. Typical stress/ 
s t rength distributions,  representing specific values of reliabil i ty , w e r e  
s tored  in a computer. From these distributions various sample s i zes  
were  taken and the result ing estimate of reliabil i ty computed. I teration 
of this process  resulted in the construction of empir ical  sampling d i s t r i -  
butions for  specific values of reliability and specific sample s izes .  
Emphasis  was placed on very high values of reliabil i ty (. 99 to .99999999) 
and on very  smal l  sample s izes  (2  to  8) because a high reliabil i ty requi re -  
ment coupled with a limited number of tes t  a r t i c l e s  is commonly im-  
posed on space vehicle development programs.  

Since the sampling distribution of reliabil i ty es t imates  was found to 
be  very  sensit ive to the ra t io  of the standard deviations of the s t r e s s  
and strength distributions , sampling distributions was constructed fo r  
specific values of this ratio.  Since the t rue  ra t io  of standard deviations 
will seldom be known, the variation in  the sampling distribution, due to 
this ra t io ,  introduces a certain weakness into the application of the 
analysis.  This weakness is discussed fully in  the body of this report .  
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It is concluded f r o m  this  investigation that the sampling distributions, 
constructed by Monte Carlo simulation, may be utilized to a id  the designer 
in establishing a design reliability goal, place a confidence coefficient 
on reliability es t imates ,  and to  determine if sample s t r e s s  and strength 
data demonstrates a specified reliability a t  a specified confidence level. 

The pr imary purpose of this report  is to  present  a method and 
examples of the use of the method. The ogives given in this report  
may be used in actual application, however, not indescriminately,  
since the ogives contain small inaccuracies due to  the curve fitting 
procedure. 

SECTION I. INTRODUCTION 

A. Background 

In large space vehicle development, and in many other fields as 
well, a designer i s  often asked to  design his equipment knowing that 
l a t e r  a very sma l l  sample of i t ems  will be tes ted  to  determine i f  a 
specified minimum reliability is demonstrated at some fair ly  high 
confidence level. 
methods and reliability goals he should utilize in  formulating his design. 
His own training and experience make h im favor the safety factor approach, 
and yet statist icians and reliability engineers advocate safety margins ,  
s t ress / s t rength  relationships and other s ta t is t ical  approaches. 
publications of Robert Lusse r  advocate the safety margin  approach, 
(Ref 1) while ARINC Research Corporation under contract to  NASA 
(Ref 2) has advocated the use  of s t r e s s / s t r eng th  relationships as a 
reliabil i ty prediction technique. There  a r e  many other papers  and 
publications which propose the use of s ta t is t ical  variations in s t r e s s  
and strength in  design and subsequent analysis of the design. 
application of a single distribution (s t rength)  and a reliability boundary 
(upper limit of s t r e s s )  is discussed in re ferences  1 and 3 .  

The designer is often quite perplexed as to  the 

The 

The 

B. Scope 

This investigation attempts to  shed some additional light on problems 
concerning the use of s t r e s s l s t r eng th  s ta t is t ics  in design, reliability 
demonstration, and confidence l imits.  It i s  p r imar i ly  concerned with 
the solution of s ta t is t ical  sampling problems for which no theoretical  
solution was readily available and with the application of the data provided 
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by these  solutions. 
range of 2 t o  8 and high reliability values f rom .99  to  .99999999 have 
been purposely used because space vehicle development programs a r e  
r e s t r i c t ed  t o  small samples  and require high reliability values. 

In this  analysis, ve ry  sma l l  sample s i zes  in the 

The authors wish to  acknowledge the ve ry  capable ass i s tance  of 
Messrs .  Robert Craf ts ,  Joe  Medlock and Matt Blue of the Computation 
Laboratory,  MSFC, fo r  programming the Monte Carlo simulation 
scheme,  and of Mr. E. L. Bombara, Engine Pro jec ts  Office, MSFC, 
whose technical advice and suggestions were  very helpful. 
was presented a t  the U. S. A r m y  Ninth Conference on Design of 
Experiment a t  the Redstone Arsenal October 23,  1963. 

This Paper 

SECTION 11. DESCRIPTION 

A. Analysis 

The reliability of many items in l a rge  space vehicles f rom piece 
p a r t s  t o  l a rge  s t ruc tura l  elements,  can be appropriately considered t o  
be a function of a stress distribution and a strength distribution. 
s t r e s s  distribution is defined as a distribution of s t r e s s e s  t o  which the 
population of i t ems  will b e  subjected in  actual  use,  and a strength 
distribution is defined as a distribution of s t r e s s e s  which will cause 
fai lure  of the i tems. 
pitting a distribution of "what an i t em will do" against a distribution of 
"what it is required t o  do" in  any performance parameter .  
is not res t r ic ted  to  the m o r e  common application of s t ruc tura l  stress/  
s t rength analysis. 

A 

This analysis applies t o  the general  problem of 

The analysis  

An example of the relationship between the s t r e s s  and s t rength 
distributions of a typical situation is shown in F igure  1. 
are assumed to  be normal ,  aa assumption which is retained throughout 
this  paper. 

The distributions 

A randomly chosen value of s t r e s s  (X,) subtracted f rom a randomly 
chosen value of strength (XI) gives a var ia te  f rom the s t rength minus 
s t r e s s  distribution. By repeating this  process  many t imes ,  a distribution 
of strength minus s t r e s s  may be formed. It will appear  as shown i n  
F igure  2. 
distribution minus the mean of the s t r e s s  distribution. The s tandard 
deviation of this distribution is the square  root of the sum of the var iances  
of the s t rength and s t r e s s  distributions. 
s t r e s s  equals strength and a zero point appears  on the X, - X, axis. 

The mean of this  distribution is the mean of the s t rength 

At some point on this distribution, 
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Since any negative value of strength minus s t r e s s  represents  a fa i lure ,  
the a r e a  below the zero  point represents  unreliability, and the a r e a  
above the zero point represents  reliability. 
be stated a s  follows (Ref 4): 

Mathematically this may 

R = Pr (X, 2 X 2 )  

R =  Pr (XI - X, - Mxl t Mx2 2 - Mxl MXZ) 

R =  Pr ( Z  2 ) since Z i s  a normal  deviate M X 2  - Mxl 

u 2 t u  2 
X1 x2 

In actual practice the parameters  of the s t r e s s  and strength 
distribution will ra re ly  be known and must  be estimated f rom sample 
data. Small sample est imates  of the parameters  may be used to 
es t imate  reliability as follows: 

) which can be obtained f r o m  the normal Rest = Pr ( Z  2 2 
&X12 + sx2  

table of a reas .  

Since an estimate of the reliability of a par t icular  situation can 
now be made, the next logical s tep i s  t o  describe the variations expected 
in  this estimate due t o  sampling. 
strength statistical relationship, the sampling distribution of reliability 
es t imates ,  based on this relationship, mus t  be developed. Since there  
was no known theoretical  solution to  the description of this variation, a 
computer program was developed using Monte Carlo simulation to  
derive the empir ical  sampling distribution of the quantit 

In order  t o  make use of the s t r e s s /  

$+=?+i$* 
Very briefly, this simulation technique consists of the following 

steps: 

(1) Store hypothetical s t r e s s  and strength distributions i n  the 
computer . 

( 2 )  Generate a pseudo random number. 



( 3 )  Use this random number to get a random value of s t rength 
( X I )  repeating this process N t imes.  

(4) 

(5 )  

Compute a sample mean and s tandard deviation for strength. 

Repeat the process  fo r  s t ress .  
( 

x2 - XI 

+ SxzZ 
( 6 )  Compute K = 

(7)  F o r m  a his togram of values of K,  which represents  the sampling 
distribution. As many values of K as des i red  may be obtained 
f rom the program, dependent on the accuracy desired.  1000 
values were used to  obtain the information for  this  paper. The 
sampling distribution m a y  be put in a cumulative fo rm,  t e r m e d  
an ogive, in order  t o  be able t o  read  K values corresponding 
to selected valnes nf probability. 

B. Results 

The factors  which influence the sampling distribution of K will now 
be discussed. First, sample s ize ,  of course,  will influence it. An 
empir ica l  sampling distribution must be generated for  each sample 
s ize  that will be used in  actual practice. To give a n  idea of how the 
sampling distribution va r i e s ,  as sample s ize  va r i e s  , some ogives for  
var ious sample s izes  have been developed. 

The ogives in figure 3 ,  f rom left to  right, represent  values of 
reliabil i ty f rom .99 to  .99999999. 
the left represents  the variation inherent in estimating a t rue  .99  
reliabil i ty using a specified sample size. 
case  where NX1 
the s t rength and s t r e s s  distributions. 
and s t rength are equal in this case. 
deviations will be discussed la ter .  
s i ze s  and equal s igmas appear in figures 4 through 8. 

In other words,  the first curve to  

This figure represents  the 

The s tandard deviations of s t r e s s  
The effect of varying these s tandard 

= 8 and Nx2 = 8 Le .  , sample s i zes  of 8 f rom each of 

Other ogives for  var ious sample 

As may be observed f rom figures 3 through 8, the ogives va ry  
quite radically with sample s ize ,  especially in  the ve ry  smal l  sample 
s i zes  used here.  In order  to  use this type empir ica l  data, ogives for 
the specific sample s izes  used in a par t icular  application must  be 
developed. 
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The second important factor ,  which causes  the sampling distribution 
to  vary,  is the rat io  of the standard deviations of s t r e s s  and strength.  
This ratio is defined as the smal le r  standard deviation divided by the 
l a rge r  standard deviation, regard less  i f  the standard deviation is f rom 
s t r e s s  or  strength. 
that the sigma rat io  had an important effect on the variation of the sam- 
pling distribution, and l a t e r ,  the theoretical  application of reference 5 
se rved  to  verify this conclusion. 
showed that for equal sample s izes  the degrees  of f reedom of the non- 
cent ra l  t distribution is a function of sample s i ze  and the rat io  of s tandard 
deviations of the s t r e s s  and s t rength distributions. F igure  9 shows the var ia -  
tions in the sampling distributions for  various rat ios  of the s tandard devia- 
tions with a fixed sample s ize  of Nx = Nxz = 5. 
of the distributions a r e  shown since most  applications will be  concerned 
with high confidence and because the variation is most  pronounced in this 
a r ea .  
puter program constant except the sigma rat ios .  The sample s izes  were  
equal for s t r e s s  and strength. As the figure indicates by convergence of 
the curves,  t h e r e  is l i t t le variation in  the sampling distribution of IK" 
attributable to sigma rat ios  below the 80th percentile point of ITSK'! 
this point there  is  considerable variation; the higher ra t ios  resul t  in 
sampling distributions which a r e  skewed to a grea te r  degree.  
ra t ios  up to 1/100 were  run  on the Monte Car lo  program,  the prac t ica l  
range is probably between 1 and 1/10 for  most  applications. 
1/10 ratio,  however, there  is a la rge  variation; therefore ,  separa te  
curves  for the specific ra t io  must  be utilized in actual application. 
weakness,  however, in this procedure is that in pract ice  the actual  ra t io  
will  seldom be known and therefore  must  be estimated f rom sample sata.  
An F t e s t  for the rat io  of two var iances  could be used to establish i f  there  
is any significant difference between the s igmas and possibly, confidence 
l imits  for the rat io  of two var iances  could be utilized for estimating the 
limits of the ratios.  
to  establishing a rat io  f rom sample data which could be used for  entering 
the appropriate se t  of curves .  

Ea r ly  in this program Monte Car lo  resu l t s  indicated 

The resul ts  of the theoret ical  application 

Here  only the upper portion 
1 

These curves were  obtained by holding all variables in the com- 

Above 

Although 

Even at the 

A 

Fur the r  work is desirable  in developing a n  approach 

Another important factor t o  consider is the case  of unequal s igmas 
( s t r e s s  and strength) and unequal sample  s izes .  
dition (long tail to the right)  in the sampling distribution of "K"wil1 resul t  
when the smal le r  sample is taken f rom the distribution which has the 
l a r g e r  standard deviation. F o r  instance, a s sume  that the s tandard devia- 
tion of strength is twice that of s t r e s s  and a sample of 8 is taken f r o m  the 
s t r e s s  distribution and 5 f rom the s t rength distribution, i. e . ,  the 
sma l l e r  sample is  taken f rom the distribution with the l a rge r  sigma. 

The most  skewed con- 
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What would happen if a r eve r se  procedure were used and the la rge  sample 
taken f rom the distribution having the l a rge r  sigma? 

The ogive for this case  is shown in figure 10. The broken line 
represents  the ogive for  the la rge  sample matched with la rge  sigma, 
and the solid line represents  a re run  of the same case  with the small 
sample matched with the la rge  sigma. 
significant variation in  the two conditions. It is concluded, therefore ,  
that  this  is another condition which must  be included in  the Monte Carlo 
output in order  to  utilize the results efficiently and accurately. 
p resents  no problem, however, i f  the sigma ra t io  is known since Monte 
Carlo runs for  the required conditions can be made. 
m e r e l y  to  i l lustrate  that it does have an  influence. 

As can be seen, there  is a 

This 

It is being presented 

The discussion, thus far, has dealt only with the mechanics of 
obtaining the sampling dis t r ib~i ioi i  of "XI' ar;d i t s  variation as related 
to  specific factors  causing it. 
of such data. 

It is appropriate  t o  discuss  the application 

C. Application 

The c r i t e r i a  for  determining whether sample data demonstrates  a 
given reliability at a specified confidence will be developed in t e r m s  of 
"K" which is a normal  deviate corresponding to  a specified area under 
the normal  curve. 

The bas is  for  developing the demonstration c r i t e r i a  is shown in  
F igure  11 which depicts the distribution of & - X Z  and X1 - X2 - Kc 

a r e a  above which (obtained f rom normal tables  of a r e a s )  r ep resen t s  
the reliabil i ty which it is required t o  demonstrate.  Kc represents  a 
normal  deviate g rea t e r  than Z which must  be found and when applied 
will a s s u r e  a demonstrated reliability with confidence C. 

\I SXI 2 + S x 2  2 .  The Z shown in  the figure is  a normal  deviate, the 

If a Kc that sa 

(Xef 3)  can be foun 

owing inequality 
Pr (XI - X2 - Kc h Mxl - MX2 - Z ( U ~ ~ ~  t ux22) = C  

s a c r i t e r i a ,  a decision can be made 
a s  to whether o r  not the sample data demonstrates  a specified 
reliabil i ty (Z) .  This inequality may be reduced to  

pr (XI - x2 - K, Vsx1 2 t s X z 2  2 0 )  since M,, - M~~ - z/-- = o 
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in this situation, because the Monte Carlo program was run on this 
basis.  Manipulation of this  inequality, as follows, mathematically,  
gives the cr i ter ia :  

2 f S X z 2  ) = c < Pr (Xi  - X2 = K, 
- - 

o r  

Now Kc can be found by re fer r ing  to the Monte Carlo developed 
ogives for  the conditions of the problem (specified Z ,  Nxl 
u ). Once Kc is found, the c r i t e r i a  for  demonstration i s  a s  follows: 

N X 2 ,  u x l  

x 2  

> = K,, reliability Z is  demon- Xl - x2 If the sample quantity 
dSX12 SX, 2 

s t ra ted  with the desired confidence. A s  an example, suppose samples 
of Nx = 8, Nx2 = 8 gives X, = 80,00O,T2 = 60,000, Sx, = 3000, Sx2 = 3000, 
and the problem was to  determine i f  .9999 reliability ( Z  = 3 .  71) was 
demonstrated at the 90% confidence level. 

is found to  be 4.95 which is  Kc. x 2  

- 
1 

The 90% point on the ogives 
f o r  .9999, Nxl = NX2 = 8, u x l =  

I %q2 _- - - - - _ _  + - s x z 2  
- % ? 4.7 therefore since 4.7 < 4.95 reliabil i ty . 9999 is not 

demonstrated at  the 90% confidence level. 
obtained is dependent on how close the t rue  sigma ra t io  i s  to unity, 
since it was assumed that Ux = 

of a lower confiaence l imit  on a reliability estimate.  
set  of ogives is  entered with the reliability es t imate  ( re l iabi l i ty  es t imate  
expressed  in t e r m s  of a K value) and a confidence i s  r ead  f o r  each 
reliability value represented by a curve. If sample data (Nxl  = N,, - - 8 ,  
u x l  = uxd gave a reliability es t imate  expressed  in t e r m s  of K = 3 .  5 for 
a given sigma rat io  and a given sample s ize ,  proceed a s  follows to  
a r r ive  at  a lower confidence limit: 

The accuracy of the answer 

x2 in this example. 
1 

Another Lpplication of the Monte Carlo resu l t s  is the establishment 
The appropriate 

(1) Refer t o  the s e r i e s  of ogives ( f igure 12) representing the 
s igma ratio and sample s izes  applicable to  the problem. 

( 2 )  On the horizontal scale  locate a K value of 3.  5 which was the 
sample estimate and draw a ver t ical  line through the point. 



9 

(3)  Where the ver t ical  line intersects  a curve,  read a confidence 
for the reliabil i ty represented by that curve. 
shows 95’70 confidence in .99 reliability, 70’70 confidence in .999  reliability, 
etc. By generating a sufficient number of curves ,  a confidence coefficient 
for  the reliability es t imate  in question, or at  l eas t  close enough to  it 
for  pract ical  application, can be obtained. 

F o r  the example, figure 12 

If in the initial design of an item, a designer knew exactly the 
s t r e s s  distribution and knew exactly what strength distribution he could 
get, designing would be a simple problem and the re  would be  no need 
for  demonstration. However, this is not the case ,  and the designer has 
to  make est imates  of the distribution. 

Assuming that the designer knew exactly the strength and s t r e s s  
distributions, and was to  design, knowing that a sma l l  sample of his i tems 
was to be tes ted later for demonstratioa p u r p ~ s e s ,  it wmdd be to  his benefit 
to overdesign so that he would have a good chance, s ay  9070, of having the 
sma l l  sample demonstrate the specified reliability. 
at  how much he should overdesign, he can consult the Monte Carlo 
developed ogives and find a Kc such that i f  the sample K i s  g rea t e r  than 
Kc, the sample data has demonstrated the required reliabil i ty a t  the 
des i red  confidence. 
ing this  approach. 
demonstrate the required reliability, he must design to a reliabil i ty 
represented  by an ogive 9070 of which is  above the K, point. This logic 
seems  to  be non sensical  since i f  a designer knows the distributions he 
could just design to  the reliability he des i res  and the re  would be  no point 
in  a demonstration program; however, this  logic can be applied to  the 
situation where the designer does not know the distributions,  but has some 
knowledge of them f rom experience o r  design calculation. 
designer wants to design so that he has  a 90% chance of demonstrating 
a specific reliability with a specified sample s ize ,  it  can be concluded 
f rom the previous discussion that he must  design to  a reliabil i ty above 
that which gives him a 9070 chance of demonstrating it with the specified 
sample size.  
and depends upon how well the designer thinks he can est imate  the 
distribution. 
goal ( inherent design reliabil i ty) must be higher than the specific 
reliabil i ty which i s  to  be demonstrated at a high degree of confidence. 
There a r e ,  of course,  other factors which influence the establishment 
of reliabil i ty goals. Weight, cost and performance all should influence 
design decisions and must be properly considered a s  tradeoff factors  

In order  to  a r r i v e  

Reference to figure 13 will  a id  the reader  in  follow- 
If the designer wants a 90% chance of having a sample 

Assuming a 

How much above is a ma t t e r  of engineering judgement, 

This conclusion vividly points out the fact that a design 
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against the statistically developed goal. 

Since much of the foregoing discussion of reliability has  been in 
t e r m s  of the normal  deviate Z ,  f igure 14 has  been provided to  enable 
the reader  to determine Z directly f rom a numerical  value of unrelia- 
bility (1-R). 

SECTION 111. CONCLUSIONS AND RECOMMENDATIONS 

A. Conclusions 

This investigation has  revealed that the s ta t is t ical  information 
afforded by very small samples  f rom a s t r e s s / s t r eng th  situation (even 
as low as 2) can b e  useful t o  the designer and a reliability engineer. It 
has a l so  revealed that the sampling distribution of reliability es t imates  
made by taking sample data f r o m  the s t r e s s / s t r eng th  distributions is 
very  sensitive to  sample s ize  and the rat io  of the s tandard deviation of 
the s t r e s s  and strength distributions. 

It is concluded that the empirical sampling distribution of reliability 
es t imates  can be utilized by the designer o r  reliability engineer as 
follows: 

1. Reliability Demonstration - Given sample data f rom s t r e s s  and 
strength distributions, a determination can  be  made as to  whether the 
sample data demonstrates  a specified reliability a t  a chosen confidence 
level. 

2. Establishing Confidence Coefficients - Given sample data f r o m  
a s t r e s s / s t r eng th  situation, confidence coefficients for var ious values 
of reliability can be  est imated,  l imited only by the number of curves  
that have been generated by Monte Carlo. 

3. Recommend Design Goal - One can establ ish and recommend 
to  the designer a design goal such that i f  he  designs i t ,  a pre-chosen 
sample will demonstrate a specified reliability a t  a chosen confidence 
level,  a specified percent of the t ime. 



B. Recommendatio s for Future  Inve t igat ion 

In view of the number of promising applications discovered during 
this  investigation and the weaknesses and l imitations that a r e  inherent 
in  the nature and extent of this analysis, it is believed that the following 
a r e a s  a r e  worthy of fur ther  investigation: 

1. Since the rat io  of standard deviations of the s t r e s s  and strength 
distributions has  a la rge  affect on the variance of the reliabil i ty sampling 
distribution (Distribution of "K") and since in pract ice  this  ra t io  will 
seldom be known but must  be estimated f rom sample data, a method 
should be derived for  establishing a ra t io  which could be used for enter-  
ing the appropriate set  of empirical  curves.  

2. Extension of the analysis to var ious combinations of different 
types of distributions,  other than normal,  slioiild be ii~-~-estigated by the 
Monte Carlo process  since in these areas not even approximations to  
the o r  e t ical  solutions are available, 
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